AC electrokinetics is a promising approach for sample preparation and reaction enhancement in lab-on-a-chip devices. However, relative little has been done on the electrokinetic manipulation of physiological fluids and buffers with similar properties, such as conductivity. Herein, electrokinetic manipulation of fluids with a wide range of conductivities has been studied as a function of voltage and frequency. AC electrothermal flow is determined to dominate the fluid motion when the applied frequency of the AC potential is above 100 kHz. Interestingly, experimental data deviate from theoretical prediction for fluids with high conductivities (> 1 Sm−1). The deviation can be understood by voltage modulated electrochemical reactions and should be accounted for when manipulating clinical materials with high conductivities. The study will provide useful in sights in designing lab-on-a-chip devices for manipulating clinical samples in the future.

This content is only available via PDF.
You do not currently have access to this content.