Advancements in technologies for assessing biomechanics at the cellular level have led to discoveries in the relationship between mechanics and biology (mechanotransduction) and the investigation of cell mechanics as a biomarker for disease [1]. With the recent development of an integrated optical tweezer with micron resolution particle image velocimetry (436 nm spatial resolution), the opportunity to apply controlled multiaxial stresses to suspended single cells is available [2]. A stress analysis was applied to experimental and theoretical flow velocity gradients of suspended cell-sized polystyrene microspheres in microfluidic environments representing the relevant geometry of non-adhered spherical cells as observed for osteoblasts, chondrocytes, and fibroblasts [3]. That analysis identified a very low level of applied stresses available during creeping laminar flow within straight and cross-junction microfluidic channel arrangements with uniform and extensional flows, respectively. As a followup study, the objective here was to apply a range of normal and shear stress profiles in a two-dimensional, computational analysis and estimate the responding cellular strains.

This content is only available via PDF.
You do not currently have access to this content.