Random filamentous networks and their response to the applied load can be considered as a model to study the mechanical properties of biological systems such as cytoskeleton of a cell and connective tissues. A mathematical model for the actual and complex deformation of these networks under stress is developed using a micromechanics approach. We recently studied the effect of various micro-structural parameters such as fiber length, mean segment length and fiber flexibility on the network deformation field at various length scales. The network elasticity is mapped into a two dimensional heterogeneous continuum domain in order to show that the elastic fields of dense fiber networks show long range correlations over a range of scales for which we gave the upper and lower bounds. It is concluded that the deformation of random networks is similar to that of highly heterogeneous continuum domains with stochastic distribution of moduli. We employed the stochastic finite element method to solve boundary value problems defined on the random fiber network domain. Here, we present a brief review of this methodology and report new results on scaling properties of the structure of fiber networks using box-counting method.
Skip Nav Destination
ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology
February 7–10, 2010
Houston, Texas, USA
Conference Sponsors:
- ASME Nanotechnology Council
ISBN:
978-0-7918-4392-5
PROCEEDINGS PAPER
On Structure and Elastic Fields of Random Fiber Networks
Hamed Hatami-Marbini,
Hamed Hatami-Marbini
Stanford University, Stanford, CA
Search for other works by this author on:
Catalin R. Picu
Catalin R. Picu
Rensselaer Polytechnic Institute, Troy, NY
Search for other works by this author on:
Hamed Hatami-Marbini
Stanford University, Stanford, CA
Catalin R. Picu
Rensselaer Polytechnic Institute, Troy, NY
Paper No:
NEMB2010-13058, pp. 259-260; 2 pages
Published Online:
December 22, 2010
Citation
Hatami-Marbini, H, & Picu, CR. "On Structure and Elastic Fields of Random Fiber Networks." Proceedings of the ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. Houston, Texas, USA. February 7–10, 2010. pp. 259-260. ASME. https://doi.org/10.1115/NEMB2010-13058
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
J. Appl. Mech (September,2008)
A Growth Mixture Theory for Cartilage With Application to Growth-Related Experiments on Cartilage Explants
J Biomech Eng (April,2003)
Computational Modeling of Ventricular Mechanics and Energetics
Appl. Mech. Rev (March,2005)
Related Chapters
Introduction
Ultrasonic Methods for Measurement of Small Motion and Deformation of Biological Tissues for Assessment of Viscoelasticity
Approximate Analysis of Plates
Design of Plate and Shell Structures
On the Evaluation of Thermal and Mechanical Factors in Low-Speed Sliding
Tribology of Mechanical Systems: A Guide to Present and Future Technologies