Here, we incorporate the results of our new “altered phase theory” (Sikdar et al. 2008a) into design of new polymer clay nanocomposites (PCNs) for bone biomaterials applications. Montmorillonite (MMT) clay was modified using unnatural amino acids as potentially new biocompatible modifiers. The longer carbon chain structures of the unnatural amino acids are expected to enhance non bonded interactions with clay as well as maintaining the usefulness of functional groups of natural amino acids. The specific choice of amino acids is based on both the antibacterial activity reported in literature and also our previous studies on role of chain length, functional groups etc of modifiers in influencing mechanical behavior in PCNs. Biocompatibility studies using cell culture experiments as well as mechanical behavior is evaluated for the PCNs. FTIR spectroscopy is used to compare changes to molecular structure. The increase in d001 spacing of modified clay compared to pure clay obtained from XRD experiments confirms successful intercalation of modifier. The osteoblast cells were found to grow and proliferate over the substrates. The major contribution of this work is the design of novel amino acid biopolymer-clay nanocomposites for biomaterials applications. Porous scaffold structures were also designed and fabricated.

This content is only available via PDF.
You do not currently have access to this content.