Tissue engineering may require precise patterning of cells and bioactive factors to recreate the complex, 3D architecture of native tissue. These cells and bioactive components may then need to be repositioned during tissue growth in vitro and noninvasively imaged to track tissue development. We developed a new hybrid nano-bioprinting system by combining the initial patterning capabilities of a direct cell writing system with the active patterning capabilities of superparamagnetic nanoparticles. The iron oxide nanoparticles can be conjugated with proteins or loaded inside cells, printed into computer-defined patterns, and then manipulated and imaged within the 3D tissue engineering construct. In this study, iron oxide nanoparticles were bioprinted either in an alginate scaffold or inside endothelial cells. Cell viability, patterning, and imaging were assessed.

This content is only available via PDF.
You do not currently have access to this content.