Biosensor detection process involves binding between biomolecules in a solution and a functionalized sensor surface. These sensors are time and cost efficient, sensitive, and enable new applications in medicine, drug design, and environmental monitoring. In literatures, various biosensor designs have been proposed, such as planar electrodes, nanowire, and nanospheres for different applications. However, to fully realize the potentials of these biosensors for biomarker/nanoparticle detection, several challenges must be addressed. In particular, ultra-sensitive biosensors are needed for detection of ultra-low concentration biomarkers such as cancer markers for early disease detection. The goal of this paper is to understand the diffusion process of biomarkers in a liquid solution and the binding with nanosensor surface through a stochastic particle model.

This content is only available via PDF.
You do not currently have access to this content.