Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Pressure sensors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 583-592, August 19–22, 2012
Paper No: NCAD2012-1403
Abstract
Numerical simulations are presented on a feedback active control strategy for flow-induced off-track vibration of the head gimbals assembly (HGA) supporting the slider in hard disk drives, through suppressing pressure fluctuations around the HGA. A virtual sensing method is employed to enable the feedback signal changeable from pressure fluctuations at the physical sensor position to those at single “virtual sensor” positions closely around the HGA or a spatial average of pressure fluctuations along an HGA surface. Based on a linear control methodology, performance of the proposed active control strategy with different feedback signals has been investigated in two-dimensional simulations, where a physical pressure sensor and a pressure actuator are assumed on the inner-surface of the HDD cover to detect the pressure fluctuations and to actuate active pressure oscillations into HDD space respectively. The results show effective control on the HGA off-track vibration when the feedback signal is configured to minimize pressure fluctuations at specific positions closely around the HGA, such as the wake region. It is also shown that satisfying control effect can be achieved on the HGA off-track vibration in the global spectrum when the feedback signal is configured to minimize the spatial average of pressure fluctuations along the upper surface of the HGA.