Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-14 of 14
Fluids
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T06A001, August 26–29, 2018
Paper No: NCAD2018-6102
Abstract
Two significant causes of noise related to cavities are direct and indirect flow induced turbulence/vortex shedding mechanisms. Examples of induced noise can be found in many applications of both closed-flow and open-flow cavities — some with resonance of acoustic modes. An example is a flow valve with a cavity where flow along the cavity gives pulsations either trapped within the valve or exciting downstream piping acoustic modes. There are passive methods of mitigation besides detuning such as modification of the entrance to the cavity, blockage, and use of Helmholtz resonators. Natural frequencies of cavity acoustic modes can be irregular, but for many such as with circular, square, rectangular or axisymmetric shapes can give symmetry of modes. An example is a cavity at the sides of rotating disks, where transverse symmetrical modes having circular and diametric patterns are similar to structural vibratory modes for bladed disks. In the last decade it has been documented that for centrifugal compressors blade passing acoustic pressure pulsation due to Tyler-Sofrin spinning modes can add to alternating stress from non-uniform flow excitation, such as from stator wakes. Cavity acoustic mode excitation then has been termed “triple coincidence” or “triple crossing”, explaining rare documented impeller fatigue failures and likely a reason, at least partially, for some unexplained failures. A novel method described herein is to treat these and similar cavities as fluid-filled disks, then utilize or add blade-like elements within the cavities. The method described (patent application, PCT US1820880) to reduce response of these cavities is to intentionally mistune the elements as has been documented for bladed disk modes. Other applications of this method are possible for many other mechanisms. These modification(s) can alleviate concern for any mechanism having structural vibration excitation acoustically and/or for environmental noise issues.
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T01A011, August 26–29, 2018
Paper No: NCAD2018-6139
Abstract
The acoustic radiation analysis of a fully-submerged infinitely long half-filled cylindrical shell coupling with fluid field is a typical acoustic-structure problem in the infinite domain, the solution of which is currently mainly based on numerical method. The analytic or semi-analytical method is indispensable for the numerical method and the mechanism to reveal the acoustic-structure coupling characteristics. In this paper, an analytic solution is presented that can calculate the acoustic radiation of infinitely long half-filled cylindrical shell. The displacement of the shell, the fluid load and the excitation force are expressed as the combination of trigonometric series and Fourier series, and displacements of the other two directions are removed by orthogonalizing, only the radial displacement is retained. The control equation of the fluid-structure interaction can be obtained from the relationship between the amplitude of fluid load and the amplitude of radial displacement which can be established by orthogonalizing the continuous conditions of the fluid-structure coupled contact surface and the free surface boundary condition. Solving the control equation, the vibration and acoustic radiation of the coupling system can be determined. Compared with the finite element software Comsol, the results of forced vibration and underwater radiated noise show that the presented method is accurate and reliable. A new way to solve acoustic-vibration problem with partial coupling of elastic structure and sound field is provided in this study.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 285-290, August 19–22, 2012
Paper No: NCAD2012-0853
Abstract
Inside micro cavities, specific dissipative mechanisms influencing acoustic wave propagation occur due to viscous and heat-conducting nature of the fluid. This work focuses on a possible extension of the so called “Low Reduced Frequency” model for acoustic wave propagation in a thermoviscous fluid. This extension is built starting from geometrical and physical assumptions (boundary layer theory, straight waveguides) and consists in the incorporation of a stationary laminar and subsonic mean flow. The resulting equivalent fluid model provides a new damping coefficient which depends on the Mach number, the shear and thermal wave numbers and the cross-sectional profiles of axial velocity and temperature. The main application area is the study of acoustic attenuation within automotive catalytic converters or also thin fluid layers like cooling systems in small electronic devices. This formulation has been implemented for a simple one dimensional thin tube. Convergence to the original model in the absence of mean flow has been reached and comparisons with variational solutions given by Peat show good agreements.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 53-59, August 19–22, 2012
Paper No: NCAD2012-0188
Abstract
A numerical model is applied to study the application of active vibro-acoustic control in an enclosed cavity. The vibro-acoustic problem is composed of a free-free beam, representing the windshield, coupled with a rectangular planar acoustic cavity, representing the passenger compartment. Forces at the windshield boundaries are actively applied to reduce noise due to floor panel vibrations and sound from a monopole source. Noise transfer functions are used to calculate the control forces based on their ability to minimize the acoustic energy distribution in the total region and within the region of interest. Results show that noise is substantially reduced in the low frequency range accompanied with some reduction at the higher frequencies as well. Results also show that applied forces based on partial area control have more potential in reducing noise within the region of interest than those based on global area control. It was also observed that this control strategy performs better in vibration induced noise problems than in monopole source problems. The proposed model can be applied to noise control problems involving the transmission of vibratory energy into a cavity through fluid-structural coupling that relates structural vibration to cavity acoustics.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 181-191, August 19–22, 2012
Paper No: NCAD2012-0531
Abstract
The acoustic characterization of fluid machines, e.g., internal combustion engines, compressors, or fans is of great importance when designing the connected duct systems and its silencers. For machines connected to large ducts where also the non-plane wave range is important, for instance large diesels and gas turbines, a suitable way to characterize the source is to determine the sound power under reflection free conditions. For the low frequency plane wave range in-duct sound power can be measured with the widely used two microphone method. The goal of this study is to investigate how, starting from the two-microphone approach, a suitable wall mounted microphone configuration can be defined and used to estimate the propagating in-duct sound power also beyond the plane wave range. For this purpose an acoustic source test-rig was built and numerical simulations were also conducted. The in-duct sound power from monopole, dipole, and quadrupole source types was determined using twelve wall mounted microphones and cross-spectra averaging methods. The in-duct results were compared against sound power measured using the reverberation room method (ISO 3741). Based on the simulations and the experimental results the best microphone positions and weighting factors were determined.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 431-440, August 19–22, 2012
Paper No: NCAD2012-1170
Abstract
The international standard for the determination of the sound power level of transformers allows both the sound pressure and the sound intensity measurement method. Since the sound measurements take place in the reactive near-field next to the vibrating transformer tank walls, local disturbances influence the sound field characteristics at the measurement positions. As a result, the measured mean sound power level differs commonly up to 6dB at comparative measurements with both methods. Beyond these near field effects, the influence of an industrial measurement environment (background sound sources, hard-reflecting floor, semi-reverberant walls, and standing waves) to the sound pressure and sound intensity field characteristics is investigated. Hereby, numerical analyses based on 3D-FEM with consideration of the fluid-structure-coupling are used. The measured sound level differences can be re-produced and clarified in numerical analyses.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 215-220, August 19–22, 2012
Paper No: NCAD2012-0586
Abstract
Buckling of submerged cylindrical shells is a sudden and rapid implosion which emits a high pressure pulse that may be damaging to nearby structures. The characteristics of this pressure pulse are dictated by various parameters defining the shell structure such as the length to diameter ratio, shell thickness, material, and the existence and configuration of internal stiffeners. This study examines, through the use of high fidelity coupled fluid-structure finite element computations, the impact of various structural parameters on the resulting pressure wave emanating from the implosion. The results demonstrate that certain structural configurations produce pressure waves with higher peak pressure and impulse thereby enhancing the potential for damage to nearby structures.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 559-567, August 19–22, 2012
Paper No: NCAD2012-1381
Abstract
Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. A linear chirp signal is transmitted through the fluid and de-chirp method is applied to calculate the sound speed in the medium. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 261-269, July 28–30, 2008
Paper No: NCAD2008-73088
Abstract
Sound transmission in hydraulic lines is of great importance in many engineering applications. Sound produced from hydraulic pumps may be radiated to the environment, and transmitted between components through flexible hoses, often modelled as shell-type structures. Noise in hydraulic lines filled with flowing fluid is generated through complex fluid-structure interactions. In this project, a conceptual muffler configuration consisting of a set of alternating shell segments was investigated. By varying parameters such as material properties and the hose dimensions, both fluid and structural waves in the hose are attenuated through the creation of stop bands at the operating frequency. In this paper, thick- and thin-shell theories were investigated. It was found that, for low frequencies or long wavelengths, consistent results were obtained from both theories. The transfer matrix method was used in conjunction with Floquet theory in the analysis of the periodic shell system. Preliminary results showed that numerous stop bands appear and substantial attenuation can be achieved. The first two natural frequencies of a shell with and without fluid loading were computed. Their values agree with similar results from other researchers. Finally, several parameters were varied to study their effects on the natural frequencies. These results will be used later in the design of the shell attenuator.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 349-356, July 28–30, 2008
Paper No: NCAD2008-73059
Abstract
The circular cylinder pipe is extensively used for the supplement of the gas. The leakage of this gas induces the catastrophic problem when it leases into open area in the city without any monitoring. A correlation method has been mostly used for the detection of the leakage. It is needed a good coherence and an efficient energy transmission to the external sensors for the reliable estimation of the correlation. This paper investigated theoretically the propagation of the acoustic wave of the circular cylinder pipe containing the gas in a pipe for the development of the leakage monitoring system. The acoustic wave is propagated through the waveguide of the circular pipe with the characteristics acoustically coupled by the gas contained in a cylinder and the shell. However, as a special case, the acoustic waves in a metal pipe containing gas are corresponded closely to the uncoupled in-vacuo shell waves and to the rigid-wall duct fluid waves. In this case, the dominant acoustic energy can be estimated at the frequencies in which coincidence between the shell modes and the acoustic modes occurs. In the paper, the characteristics of the dominant waves are theoretically investigated and analyzed experimenttally with a long steel pipe. The measured data is clearly analyzed by the continuous wavelet transform and by spectral density analysis.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 383-388, July 28–30, 2008
Paper No: NCAD2008-73070
Abstract
The ubiquity of porous materials in engineering applications has driven a large body of work in the development of predictive and analytical models for their behavior, as well as the numerical implementation of these models. Here, the implementation of a specific class of models is described: materials for which an equivalent-fluid adequately captures the dynamic behavior. These materials include limiting cases where the solid matrix is either so stiff that it is relatively immobile, or so compliant that its motion has only a damping effect on the fluid motion. A wide class of automotive trim materials, acoustic insulation, fabrics, and aerospace materials fit this description. Several material models have been implemented recently in the commercial finite element code, Abaqus. These include the models of Craggs, Delany-Bazley, Miki, and the generalized model of Kang & Bolton. All of the models share an implementation using frequency-dependent material properties. In Abaqus, these properties are assigned to standard acoustic finite elements. Frequency-domain solution is significantly more efficient through the use of a distributed-memory parallel sparse solver, and through projection onto the space of real-valued modes. Results from the new implementation are compared to established benchmarks, and performance is discussed.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 17-29, July 28–30, 2008
Paper No: NCAD2008-73016
Abstract
Lock-in occurs between many different types of flow instabilities and structural-acoustic resonators. Factors that describe the coupling between the fluid and structure have been defined for low flow Mach numbers. This paper discusses how different flow instabilities influence lock-in experimentally and analytically. A key concept to the lock-in process is the relative source generation versus dissipation. The type of fluid instability source dominates the generation component of the process, so a comparison between a cavity shear layer instability with a relatively stronger source, for example wake vortex shedding from a bluff body, will be described as a coupling factor. In the fluid-elastic cavity lock-in case, the shear layer instability produced by flow over a cavity couples to the elastic structure containing the cavity. In this study, this type of lock-in was not achieved experimentally. A stronger source, vortex shedding from a bluff body however, is shown experimentally to locks into the same resonator. This study shows that fluid-elastic cavity lock-in is unlikely to occur given the critical level of damping that exists for a submerged structure and the relatively weak source strength that a cavity produces. Also in this paper, a unified theory is presented based on describing functions, a nonlinear control theory used to predict limit cycles of oscillation, where a self-sustaining oscillation or lock-in is possible. The describing function models capture the primary characteristics of the instability mechanisms, are consistent with Strouhal frequency concepts, capture damping, and are consistent with mass-damping concepts from wake oscillator theory. This study shows a strong consistency between the analytical models and experimental results.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 281-294, July 28–30, 2008
Paper No: NCAD2008-73017
Abstract
This paper examines numerical techniques to compute the resonant frequencies and coupled mode-shapes of general structural-acoustic systems using the finite element method. This information is useful in quantifying the key frequencies and vibration patterns of elastic structures coupled to bounded or unbounded acoustic fluid volumes. This paper reviews and evaluates three finite element solution techniques that deal with the computational difficulties encountered in structural-acoustic eigen-analysis. One of the difficulties stems from the fluid-structure coupling in the finite element equations, which depending on the variable used to discretize the acoustic fluid, either introduces non-symmetric area coupling terms in the mass and stiffness matrices or adds symmetric area coupling terms in the damping matrix. The other difficulty is related to the application of a radiation boundary condition in those structural-acoustic problems involving unbounded acoustic domains. The radiation boundary condition introduces damping terms in the finite element equations that lead to a complex eigen-analysis to determine the resonant frequencies and coupled mode-shapes. The finite element techniques evaluated in this paper consist of subspace projection employing an augmented-symmetric form of the fluid-structure equations as well as new extensions of component mode synthesis (CMS). Basic examples of simplified structural-acoustic systems are used to compare the solution accuracy between the three finite element techniques. Examples consist of simplified one-dimensional (1-D) and two-dimensional (2-D) elastic structures coupled to closed and open acoustic spaces.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 59-67, July 28–30, 2008
Paper No: NCAD2008-73029
Abstract
Sound generation in low Mach number turbomachines is typically dominated by unsteady fluid forces on rigid surfaces. As a result, the radiated sound is closely related to the unsteady flow field. The present study focused on the self noise that is generated by a ducted rotor separate from the effect of noise due to inflow turbulence. The flow rate through the rotor was independently varied in order change the mean lift on the blades. Measurements of the flow field around a ducted rotor were found to provide insight to the various mechanisms of sound that are present at different mean loading conditions. At lower flow rates the blades were partially stalled, resulting in significantly increased noise levels. The measurements included rotor wake measurements using hot-wire anemometry and far field sound. A simple model to predict the radiated self noise based on the hot-wire measurements is presented.