Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-12 of 12
Excitation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T06A001, August 26–29, 2018
Paper No: NCAD2018-6102
Abstract
Two significant causes of noise related to cavities are direct and indirect flow induced turbulence/vortex shedding mechanisms. Examples of induced noise can be found in many applications of both closed-flow and open-flow cavities — some with resonance of acoustic modes. An example is a flow valve with a cavity where flow along the cavity gives pulsations either trapped within the valve or exciting downstream piping acoustic modes. There are passive methods of mitigation besides detuning such as modification of the entrance to the cavity, blockage, and use of Helmholtz resonators. Natural frequencies of cavity acoustic modes can be irregular, but for many such as with circular, square, rectangular or axisymmetric shapes can give symmetry of modes. An example is a cavity at the sides of rotating disks, where transverse symmetrical modes having circular and diametric patterns are similar to structural vibratory modes for bladed disks. In the last decade it has been documented that for centrifugal compressors blade passing acoustic pressure pulsation due to Tyler-Sofrin spinning modes can add to alternating stress from non-uniform flow excitation, such as from stator wakes. Cavity acoustic mode excitation then has been termed “triple coincidence” or “triple crossing”, explaining rare documented impeller fatigue failures and likely a reason, at least partially, for some unexplained failures. A novel method described herein is to treat these and similar cavities as fluid-filled disks, then utilize or add blade-like elements within the cavities. The method described (patent application, PCT US1820880) to reduce response of these cavities is to intentionally mistune the elements as has been documented for bladed disk modes. Other applications of this method are possible for many other mechanisms. These modification(s) can alleviate concern for any mechanism having structural vibration excitation acoustically and/or for environmental noise issues.
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T01A009, August 26–29, 2018
Paper No: NCAD2018-6134
Abstract
Certain operating conditions such as fluctuation of the external torque to planetary gear sets can cause additional sidebands. In this paper, a mathematical model is proposed to investigate the modulation mechanisms due to a fluctuated external torque (FET), and the combined influence of such an external torque and manufacturing errors (ME) on modulation sidebands. Gear mesh interface excitations, namely gear static transmission error excitations and time-varying gear mesh stiffness, are defined in Fourier series forms. Amplitude and frequency modulations are demonstrated separately. The predicted dynamic gear mesh force spectra and radial acceleration spectra at a fixed position on ring gear are both shown to exhibit well-defined modulation sidebands. Comparing with sidebands caused by ME, more complex sidebands appear when taking both FET and ME into account. An obvious intermodulation is found around the fundamental gear mesh frequency between the FET and ME in the form of frequency modulations, however, no intermodulation in the form of amplitude modulations. Additionally, the results indicate that some of the sidebands are cancelled out in radial acceleration spectra mainly due to the effect of planet mesh phasing, especially when only amplitude modulations are present.
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T01A011, August 26–29, 2018
Paper No: NCAD2018-6139
Abstract
The acoustic radiation analysis of a fully-submerged infinitely long half-filled cylindrical shell coupling with fluid field is a typical acoustic-structure problem in the infinite domain, the solution of which is currently mainly based on numerical method. The analytic or semi-analytical method is indispensable for the numerical method and the mechanism to reveal the acoustic-structure coupling characteristics. In this paper, an analytic solution is presented that can calculate the acoustic radiation of infinitely long half-filled cylindrical shell. The displacement of the shell, the fluid load and the excitation force are expressed as the combination of trigonometric series and Fourier series, and displacements of the other two directions are removed by orthogonalizing, only the radial displacement is retained. The control equation of the fluid-structure interaction can be obtained from the relationship between the amplitude of fluid load and the amplitude of radial displacement which can be established by orthogonalizing the continuous conditions of the fluid-structure coupled contact surface and the free surface boundary condition. Solving the control equation, the vibration and acoustic radiation of the coupling system can be determined. Compared with the finite element software Comsol, the results of forced vibration and underwater radiated noise show that the presented method is accurate and reliable. A new way to solve acoustic-vibration problem with partial coupling of elastic structure and sound field is provided in this study.
Proceedings Papers
Proc. ASME. NCAD2018, ASME 2018 Noise Control and Acoustics Division Session presented at INTERNOISE 2018, V001T02A001, August 26–29, 2018
Paper No: NCAD2018-6130
Abstract
Random excitations can result from various types of non-deterministic loads such as wind loads, terrain loads, and other types of white noise loads. In this paper, an overview is presented of the modal method to obtain the random response of a coupled structural-acoustic system subjected to random excitations. When the structural system is coupled with an enclosed cavity, the structural-acoustic frequency response functions (FRFs) can be obtained using the uncoupled structural modes and the uncoupled acoustic modes, with structural-acoustic coupling as well as modal damping included in the formulation. The random response of the coupled structural-acoustic system is then obtained by summation of the structural-acoustic FRFs with the applied auto- and cross-spectral random loadings at the excitation locations. The theoretical formulation of the coupled structural-acoustic system is described. An example of a rectangular cavity coupled with flexible panels exposed to external random white noise load is presented. The methodology is then applied to an automotive vehicle travelling over a randomly rough road to predict the interior sound pressure response in the vehicle.
Proceedings Papers
Proc. ASME. NCAD2015, ASME 2015 Noise Control and Acoustics Division Conference, V001T01A008, August 9–12, 2015
Paper No: NCAD2015-5914
Abstract
In the past decade, plate-like structures embedded with one or more acoustic black hole (ABH) features have been developed as a promising passive approach for structural sound and vibration control. In this study, the concept of combining dynamic vibration absorbers (DVAs) and the ABH effect is proposed to further improve the vibration control effectiveness of a variable thickness plate. A finite element (FE) model is developed to analyze the vibration response of a plate embedded with both ABHs and DVAs under point force excitations. To demonstrate the effectiveness of different vibration control approaches, the vibration responses of plates of uniform thickness, variable thickness embedded with ABH features, variable thickness embedded with both ABH features and damping layers, and variable thickness embedded with both ABH features and DVAs are compared experimentally. It is shown that, in the frequency range considered in the current study which is up to 6.4 kHz, the uniform plate presents high average velocity response level. On the other hand, although 11.5% lighter, the variable thickness plate integrated with both ABH and DVA features results in the lowest response level. Results in this study demonstrate the potential of combing DVAs and ABHs together as an effective lightweight noise and vibration control approach.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 279-284, August 19–22, 2012
Paper No: NCAD2012-0838
Abstract
Noise propagation mechanisms in presence of a rotational flow are currently receiving some attention from the aircraft industry. Different methods are used in order to compute the acoustic wave propagation in sheared flows in terms of pressure perturbations (e.g. Linearized Euler Equations (LEE), Lilley’s and Galbrun’s equations). Nevertheless, they have drawbacks in terms of computational performance (high number of DOFs per node, inadequacies of classical numerical schemes like standard FE). In contrast with other studies, in this work, the fluctuating total enthalpy is selected as the main variable in order to describe the acoustic field, which obeys to a convected wave equation obtained by linearization of momentum (Crocco’s form), energy and continuity equations and with coefficients depending on flow variables. The resulting 3D convected wave operator is an extension of the Möhring acoustic analogy which is able to predict the sound propagation through rotational flows in the subsonic regime and is well adapted to FE discretization. A 2D convected wave equation is generated from the previous operator. This is followed by a numerical solution based on FEM with two types of boundary conditions: non reflecting BC and incident plane wave excitation. The numerical results are used to estimate the reflection coefficient generated by the shear flow. The new acoustic wave operator is compared to well-known theories of flow acoustics (Pridmore-Brown wave operator) and shows promising results. Finally additional development steps are presented so further improvements on the new operator can be carried out.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 115-126, August 19–22, 2012
Paper No: NCAD2012-0321
Abstract
A lighter, more robust airframe design is required to withstand the loading inherent to next generation non–cylindrical commercial airliners. The Pultruded Rod Stitched Efficient Unitized Structure concept, a highly integrated composite design involving a stitched and co-cured substructure, has been developed to meet such requirements. While this structure has been shown to meet the demanding out-of-plane loading requirements of the flat-sided pressurized cabin design, there are concerns that the stiff co-cured details will result in relatively high acoustic radiation efficiencies at frequencies well below the thin skin acoustic coincidence frequency. To address this concern and establish a set of baseline vibroacoustic characteristics, a representative test panel was fabricated and a suite of tests were conducted that involved measurements of panel vibration and radiated sound power during point force and diffuse acoustic field excitations. Experimental results are shown and compared with Finite Element and Statistical Energy Analysis model predictions through the use of modal and energy correlation techniques among others. The behavior of the structure subject to turbulent boundary layer excitation is also numerically examined.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 351-357, August 19–22, 2012
Paper No: NCAD2012-1016
Abstract
In transportation vehicles under operating conditions, interior noise frequently results from forces transmitted through the vehicle structure that excite body panel vibrations that couple with the body modes to radiate noise to the interior. The body panel participations to the interior noise that result from the force transfer paths can be identified using acoustic and structural-acoustic finite element models of the vehicle. This paper describes the transfer path analysis method to identify the body panel and modal participations for prescribed forcing excitations to the vehicle and to evaluate the effect of structural modifications. The theoretical development of the structural-acoustic finite element method and its example applications to two automotive vehicles are presented.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 309-318, August 19–22, 2012
Paper No: NCAD2012-0920
Abstract
As an effort to reduce energy consumption and hazardous emissions, lightweight design has become more and more important for new vehicle developments. Substituting conventional steel material with other low-density materials in building vehicle structures is one typical approach for lightweight designs. To investigate the influence of the structural weight change on the noise, vibration and harshness (NVH) performance, this study presents a structural-acoustic coupled model of a rectangular shaped cavity enclosed by 1 or 2 flexible panels. Using this modal, parametric studies aiming at reducing the total structural weight and simultaneously improving the NVH performance are conducted. For the case of a single flexible panel subject to a point force excitation, it is found that substituting the heavier steel panel with a lighter Al panel may actually reduce the sound radiation inside the cavity at the low frequency range. On the other hand, at higher frequencies, the noise radiation level is roughly inversely proportional to the material density. For the case with dual flexible panels, although it is predicted that the two panels are weakly coupled through the acoustic cavity at most frequencies, the noise level may still be reduced at a lighter structural weight in certain cases.
Proceedings Papers
Proc. ASME. NCAD2012, ASME 2012 Noise Control and Acoustics Division Conference, 441-452, August 19–22, 2012
Paper No: NCAD2012-1188
Abstract
For experimental determination of structural loss factor with mechanical excitation, the excitation location — i.e. “where to excite?” — and sensor placement — i.e. “where to measure?” — are quintessential considerations. For a highly-damped panel a significant portion is not experiencing reverberant field conditions, especially in higher frequency bands. That is, localized disturbances “die-out” before they can reflect off boundaries. As energy flows away from the excitation point, the energy the level in the direct field is higher than elsewhere, thereby resulting in higher response levels. Since the level of response is inversely proportional to damping, the loss factor predicted inside the direct field is underestimated. The size of direct field is proportional to frequency and loss factor. Therefore, for a highly damped and/or small plate, loss factor estimation based on randomly positioned accelerometers—which have a higher probability of being inside the direct field—will tend to underestimate damping.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 357-361, July 28–30, 2008
Paper No: NCAD2008-73063
Abstract
In the high frequency limit, a vibrating panel subject to spatially-random temporally-broadband forcing is shown to have broadband power and directivity properties that can be expressed in simple analytical terms by a limited set of parameters. A lightly-loaded fixed-fixed membrane with a distribution of broadband uncorrelated drive points is analyzed. The theory is developed using classical modal methods and asymptotic modal analysis, assuming small damping. The power and directivity of the radiated pressure field are characterized in terms of structural wave Mach number, damping ratio, and dimensionless frequency. The relatively simple directivity pattern that emerges can be shown to arise from edge radiation. From the point of view of edge radiation, assuming a lightly damped reverberant structure, the same radiation formula and directivity pattern can be derived in a much simpler manner. Broadband radiation from structures with subsonic and supersonic flexural wave speeds is discussed and characterized in terms of a simple interpretation of the surface wavenumber spatial transform. The results show that the physical idea of interpreting edge radiation in terms of uncancelled volumetric sources is not correct, and the effect of higher order edge singularities is in fact very significant. The approach implies a relationship between radiation and structural power flow that is potentially useful in energy-intensity based prediction methods, and can be generalized to more complex structures with application to vehicle interior noise prediction.
Proceedings Papers
Proc. ASME. NCAD2008, ASME 2008 Noise Control and Acoustics Division Conference, 389-396, July 28–30, 2008
Paper No: NCAD2008-73080
Abstract
A New finite element sandwich plate is presented. It is based on discrete displacement approach and allows for both symmetrical and unsymmetrical configurations. The validity and accuracy of the presented element is assessed through comparisons with both tests and classical FE modeling. The tests consist of various configurations of sandwich panels in a coupled plate-cavity system. A parametric study, using the developed element, is finally presented to highlights the effects of skin and core properties on the vibration and radiation of such structures under both airborne and structure-borne excitations.