Flow over shallow cavities is a noise concern due to the possibility of flow tone lock-in with acoustic resonators. The principal aim of this work is to understand the factors that contribute to the onset of lock-in using Computational Fluid Dynamics (CFD) models.

CFD models of shallow cavity lock-in to longitudinal acoustic resonators are developed and validated against existing test data from Lehigh University. All simulations are performed using AcuSolve™. A key technical contribution is the development of admittance inflow and impedance outflow boundary conditions to model the effects of the pipe resonator. The general trends predicted by the CFD models agree with the test data. In particular, the resonator response at the strong interaction point is well represented.

This content is only available via PDF.
You do not currently have access to this content.