The acoustic radiation analysis of a fully-submerged infinitely long half-filled cylindrical shell coupling with fluid field is a typical acoustic-structure problem in the infinite domain, the solution of which is currently mainly based on numerical method. The analytic or semi-analytical method is indispensable for the numerical method and the mechanism to reveal the acoustic-structure coupling characteristics. In this paper, an analytic solution is presented that can calculate the acoustic radiation of infinitely long half-filled cylindrical shell. The displacement of the shell, the fluid load and the excitation force are expressed as the combination of trigonometric series and Fourier series, and displacements of the other two directions are removed by orthogonalizing, only the radial displacement is retained. The control equation of the fluid-structure interaction can be obtained from the relationship between the amplitude of fluid load and the amplitude of radial displacement which can be established by orthogonalizing the continuous conditions of the fluid-structure coupled contact surface and the free surface boundary condition. Solving the control equation, the vibration and acoustic radiation of the coupling system can be determined. Compared with the finite element software Comsol, the results of forced vibration and underwater radiated noise show that the presented method is accurate and reliable. A new way to solve acoustic-vibration problem with partial coupling of elastic structure and sound field is provided in this study.

This content is only available via PDF.
You do not currently have access to this content.