Current modeling of the static and dynamic characteristics of fluid film bearings typically employs a single impedance matrix to represent the force transfer between a bearing and journal centerlines. A numerical method has been proposed that distributes the bearing impedances around the circumference of the fluid film to allow for more accurate modeling of higher order circumferential modes. In order for this method to be used with confidence, its results must first be validated. For this purpose, an experimental test method and apparatus capable of measuring these distributed bearing impedances has been developed. This paper will present the preliminary bearing displacement and pressure measurements collected from the journal bearing test apparatus and will compare these experimental results to those calculated numerically. Discrepancies between the data sets will be discussed and future steps will be outlined.

This content is only available via PDF.
You do not currently have access to this content.