Sound transmission in hydraulic lines is of great importance in many engineering applications. Sound produced from hydraulic pumps may be radiated to the environment, and transmitted between components through flexible hoses, often modelled as shell-type structures. Noise in hydraulic lines filled with flowing fluid is generated through complex fluid-structure interactions. In this project, a conceptual muffler configuration consisting of a set of alternating shell segments was investigated. By varying parameters such as material properties and the hose dimensions, both fluid and structural waves in the hose are attenuated through the creation of stop bands at the operating frequency. In this paper, thick- and thin-shell theories were investigated. It was found that, for low frequencies or long wavelengths, consistent results were obtained from both theories. The transfer matrix method was used in conjunction with Floquet theory in the analysis of the periodic shell system. Preliminary results showed that numerous stop bands appear and substantial attenuation can be achieved. The first two natural frequencies of a shell with and without fluid loading were computed. Their values agree with similar results from other researchers. Finally, several parameters were varied to study their effects on the natural frequencies. These results will be used later in the design of the shell attenuator.
Skip Nav Destination
ASME 2008 Noise Control and Acoustics Division Conference
July 28–30, 2008
Dearborn, Michigan, USA
Conference Sponsors:
- Noise Control and Acoustics Division
ISBN:
0-7918-4839-6
PROCEEDINGS PAPER
A Method for Noise Reduction in Hydraulic Lines Available to Purchase
James Wang,
James Wang
McGill University, Montreal, QC, Canada
Search for other works by this author on:
Michael Paidoussis,
Michael Paidoussis
McGill University, Montreal, QC, Canada
Search for other works by this author on:
Luc Mongeau
Luc Mongeau
McGill University, Montreal, QC, Canada
Search for other works by this author on:
James Wang
McGill University, Montreal, QC, Canada
Michael Paidoussis
McGill University, Montreal, QC, Canada
Luc Mongeau
McGill University, Montreal, QC, Canada
Paper No:
NCAD2008-73088, pp. 261-269; 9 pages
Published Online:
June 22, 2009
Citation
Wang, J, Paidoussis, M, & Mongeau, L. "A Method for Noise Reduction in Hydraulic Lines." Proceedings of the ASME 2008 Noise Control and Acoustics Division Conference. ASME 2008 Noise Control and Acoustics Division Conference. Dearborn, Michigan, USA. July 28–30, 2008. pp. 261-269. ASME. https://doi.org/10.1115/NCAD2008-73088
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Implications of Nonsub-Wavelength Resonator Spacing on the Sound Transmission Loss Predictions of Locally Resonant Metamaterial Partitions
J. Vib. Acoust (August,2021)
Fan Noise Control Using Microperforated Splitter Silencers
J. Vib. Acoust (June,2014)
Simulation of Vehicle Pass-by Noise Radiation
J. Vib. Acoust (April,1999)
Related Chapters
Reassessment
Air Engines: The History, Science, and Reality of the Perfect Engine
Toward More Effective Evaluation and Control of Airport Noise
Community Noise
Methods to Select and Compound Noise Factors
Taguchi Methods: Benefits, Impacts, Mathematics, Statistics and Applications