Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: residential time distribution (RTD)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. NAWTEC17, 17th Annual North American Waste-to-Energy Conference, 253-258, May 18–20, 2009
Paper No: NAWTEC17-2367
...), stochastic analysis, municipal solid waste (MSW), reverse acting grate, size segregation, residential time distribution (RTD) INTRODUCTION The complex behavior of heterogeneous municipal solid wastes (MSW) particles on the traveling grate of a mass-burn waste-to-energy (WTE) combustion chamber is the primary...
Abstract
Flow, mixing, and, size segregation of Municipal Solid Waste (MSW) particles on the traveling grate of a mass-burn waste-to-energy (WTE) combustion chamber is analyzed for understanding those parameters that control the combustion processes and for designing the chamber. In order to quantify these phenomena, a full-scale physical model of the reverse acting grate was built and used for investigating the effects of the motion of the reverse acting grate under a MSW packed bed with tracer particles ranging from 6 – 22 cm in diameter. Based on these experimental data, a stochastic model of MSW particle within the packed bed on a traveling grate was applied for simulating the MSW particle behavior. The result shows that the motion of the traveling grate, whose speed ranged from 15 to 90 reciprocations/hour, increases the mean residence time of small and medium particles by 68% and 8%, respectively, while decreasing the mean residence time of large particles by 17%. This is because of size segregation of particles known as the Brazil Nut Effect. When the ratio of particle diameter to the height of moving bar, d/h, increases from 0.46 to 1.69, the mixing diffusion coefficient, De at 60/hour., decreases from 96 to 38.4. This indicates that the height of the moving bars should be greater than the diameter of targeted particles.