Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: Selective Catalytic Reduction (SCR)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. NAWTEC19, 19th Annual North American Waste-to-Energy Conference, 243-249, May 16–18, 2011
Paper No: NAWTEC19-5438
... limit has already been introduced. Selective Catalytic Reduction (SCR) technologies are used in many cases to achieve the above-mentioned NOx limits. However, there are drawbacks to SCR systems such as high investment cost. Operation cost is also quite high due to the energy consumption necessary for...
Abstract
During combustion, most of the waste’s nitrogen content is transferred to the flue gases as nitrogen oxide, NO x . The EU Waste Incineration Directive defines a maximum emission limit value for NO x of 200 mg/Nm 3 as a daily average value referred to 11% O 2 . Based on National Emission Ceilings (NEC) defined by the Gothenburg Protocol, it can be expected that the limit values for NO x in the EU will become even more stringent. In some European countries (e.g. The Netherlands, Austria, Switzerland) a lower emission limit has already been introduced. Selective Catalytic Reduction (SCR) technologies are used in many cases to achieve the above-mentioned NO x limits. However, there are drawbacks to SCR systems such as high investment cost. Operation cost is also quite high due to the energy consumption necessary for the reheating of the flue gas as well as the increased pressure loss. Innovative technologies are therefore required to make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. Selective Non-Catalytic Reduction (SNCR) systems are based on the selective reaction of ammonia or urea injected into the upper furnace. In many cases SNCR technologies are limited by the ammonia slip which increases in case of more stringent NO x requirements. According to the relevant BREF document, an ammonia slip limit of 10 mg/Nm 3 is generally required at the stack. In order to achieve reduced NO x values, it is necessary to implement measures to reduce ammonia slip, by means of either a wet scrubber or a High-dust catalytic converter. EfW plants in Mainz (Germany) and Brescia (Italy) are examples of operational plants combining SNCR with such a catalytic converter type. In addition R&D activities are carried out on the development of simplified reaction mechanisms to be implemented in Computational Fluid Dynamics (CFD) codes. With these tools it will be possible to describe the interaction between turbulent mixing, radiation and chemical reaction rates. Another option to achieve low NO x values (below 100 mg/Nm 3 ) is the reduction of NO x by so-called primary measures, e.g. the Very Low NO x process (VLN), which has been developed by MARTIN jointly with its cooperation partners. The VLN process is based on a grate-based combustion system. The “VLN gas” is drawn off at the rear end of the grate and is reintroduced into the upper furnace in the vicinity of the SNCR injection positions. NO x will be reduced significantly, ensuring low NO x emission values at the stack as required, at low values for ammonia slip. The new EfW plant in Honolulu (USA) will be equipped with the VLN process. In Coburg (Germany), the VLN process will be retrofitted in an existing installation. This paper documents the potential and the limitations of different measures for NO x reduction as well as examples of recent innovative EfW plants in Europe using MARTIN technologies successfully.