The art of refining liquid hydrocarbons (crude oil) into diesel, gasoline, and fuel oils was commercially scaled decades ago. Unfortunately, refineries are technologically limited to accepting only a very narrow range of liquid hydrocarbons with very specific properties and minimal contaminates. Unrecyclable, hydrocarbon-based waste is a significant environmental problem increasing every year. According to the Environmental Protection Agency’s 2010 Facts and Figures report, over 92% of waste plastic is not recycled and with a growth rate of approximately 8% per year, there exists a critical need for a viable and environmentally sound, general purpose hydrocarbon-based recycling process. Hydrocarbon streams that fall outside of accepted refinery standards have traditionally been landfilled or melted into products of low value.

The barriers and challenges are so great that previous attempts to refine waste plastics into fuel resulted in unviable batch-based machines producing low-value, unstable mixed fuels. However, over the course of three years JBI, Inc. (“JBI”) has broken through these barriers and has designed and built a viable commercial-scale continuous refinery capable of processing a wide-range of hydrocarbon-based waste into ASTM specification fuels.

Research and testing of scale-up through 1-gallon, 3000 gallon, multi-kiln, and 40 ton/day processors took place in a plant in Niagara Falls, NY. Technical challenges encountered and lessons learned during process development will be explained in detail.

In 2009, our technology was “molecularly audited” by IsleChem, LLC (“IsleChem”) of Grand Island, NY and in 2012, the full-scale plant was viably validated by SAIC Energy, Environment & Infrastructure, LLC (“SAIC”). Numerous sources of waste plastic and users of the resulting fuel products conducted extensive audits of the technology, process, and plant. For the purpose of this paper, processing of waste plastics will be discussed in detail; however, this technology can be applied to other waste hydrocarbon-based materials such as contaminated monomers, waste oils, lubricants and other composite waste streams.

This content is only available via PDF.
You do not currently have access to this content.