This paper is based on data compiled in the course of developing, for InterAmerican Development Bank (IDB), a WTE Guidebook for managers and policymakers in the Latin America and Caribbean region. As part of this work, a list was compiled of nearly all plants in the world that thermally treat nearly 200 million tons of municipal solid wastes (MSW) and produce electricity and heat. An estimated 200 WTE facilities were built, during the first decade of the 21st century, mostly in Europe and Asia. The great majority of these plants use the grate combustion of as-received MSW and produce electricity. The dominance of the grate combustion technology is apparently due to simplicity of operation, high plant availability (>90%), and facility for training personnel at existing plants. Novel gasification processes have been implemented mostly in Japan but a compilation of all Japanese WTE facilities showed that 84% of Japan’s MSW is treated in grate combustion plants. Several small-scale WTE plants (<5 tons/hour) are operating in Europe and Japan and are based both on grate combustion and in implementing WTE projects. This paper is based on the sections of the WTE Guidebook that discuss the current use of WTE technology around the world.

Since the beginning of history, humans have generated solid wastes and disposed them in makeshift waste dumps or set them on fire. After the industrial revolution, near the end of the 18th century, the amount of goods used and then discarded by people increased so much that it was necessary for cities to provide landfills and incinerators for disposing wastes. The management of urban, or municipal, solid wastes (MSW) became problematic since the middle of the 20th century when the consumption of goods, and the corresponding generation of MSW, increased by an order of magnitude. In response, the most advanced countries developed various means and technologies for dealing with solid wastes. These range from reducing wastes by designing products and packaging, to gasification technologies. Lists of several European plants are presented that co-combust medical wastes (average of 1.8% of the total feedstock) and wastewater plant residue (average of 2% of the feedstock).

This content is only available via PDF.
You do not currently have access to this content.