During combustion, most of the waste’s nitrogen content is transferred to the flue gases as nitrogen oxide, NOx. The EU Waste Incineration Directive defines a maximum emission limit value for NOx of 200 mg/Nm3 as a daily average value referred to 11% O2. Based on National Emission Ceilings (NEC) defined by the Gothenburg Protocol, it can be expected that the limit values for NOx in the EU will become even more stringent. In some European countries (e.g. The Netherlands, Austria, Switzerland) a lower emission limit has already been introduced. Selective Catalytic Reduction (SCR) technologies are used in many cases to achieve the above-mentioned NOx limits. However, there are drawbacks to SCR systems such as high investment cost. Operation cost is also quite high due to the energy consumption necessary for the reheating of the flue gas as well as the increased pressure loss. Innovative technologies are therefore required to make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. Selective Non-Catalytic Reduction (SNCR) systems are based on the selective reaction of ammonia or urea injected into the upper furnace. In many cases SNCR technologies are limited by the ammonia slip which increases in case of more stringent NOx requirements. According to the relevant BREF document, an ammonia slip limit of 10 mg/Nm3 is generally required at the stack. In order to achieve reduced NOx values, it is necessary to implement measures to reduce ammonia slip, by means of either a wet scrubber or a High-dust catalytic converter. EfW plants in Mainz (Germany) and Brescia (Italy) are examples of operational plants combining SNCR with such a catalytic converter type. In addition R&D activities are carried out on the development of simplified reaction mechanisms to be implemented in Computational Fluid Dynamics (CFD) codes. With these tools it will be possible to describe the interaction between turbulent mixing, radiation and chemical reaction rates. Another option to achieve low NOx values (below 100 mg/Nm3) is the reduction of NOx by so-called primary measures, e.g. the Very Low NOx process (VLN), which has been developed by MARTIN jointly with its cooperation partners. The VLN process is based on a grate-based combustion system. The “VLN gas” is drawn off at the rear end of the grate and is reintroduced into the upper furnace in the vicinity of the SNCR injection positions. NOx will be reduced significantly, ensuring low NOx emission values at the stack as required, at low values for ammonia slip. The new EfW plant in Honolulu (USA) will be equipped with the VLN process. In Coburg (Germany), the VLN process will be retrofitted in an existing installation. This paper documents the potential and the limitations of different measures for NOx reduction as well as examples of recent innovative EfW plants in Europe using MARTIN technologies successfully.
Skip Nav Destination
19th Annual North American Waste-to-Energy Conference
May 16–18, 2011
Lancaster, Pennsylvania, USA
Conference Sponsors:
- Materials and Energy Recovery Division
ISBN:
978-0-7918-5457-0
PROCEEDINGS PAPER
NOx Reduction: The Challenge for Innovative Concepts in Europe
Ralf Koralewska
Ralf Koralewska
MARTIN GmbH fu¨r Umwelt- und Energietechnik, Munich, Germany
Search for other works by this author on:
Ralf Koralewska
MARTIN GmbH fu¨r Umwelt- und Energietechnik, Munich, Germany
Paper No:
NAWTEC19-5438, pp. 243-249; 7 pages
Published Online:
August 30, 2011
Citation
Koralewska, R. "NOx Reduction: The Challenge for Innovative Concepts in Europe." Proceedings of the 19th Annual North American Waste-to-Energy Conference. 19th Annual North American Waste-to-Energy Conference. Lancaster, Pennsylvania, USA. May 16–18, 2011. pp. 243-249. ASME. https://doi.org/10.1115/NAWTEC19-5438
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
Robust Filtering for Ammonia Coverage Estimation in Diesel Engine Selective Catalytic Reduction Systems
J. Dyn. Sys., Meas., Control (November,2013)
Effect of Sucrose Catalyst in the Catalytic Converter on Performance and Emission of Spark Ignition Engine
J. Thermal Sci. Eng. Appl (April,2022)
Diesel NO x Catalytic Converter Development: A Review
J. Eng. Gas Turbines Power (July,1996)
Related Chapters
Critique of the Use of Deposition Velocity in Modeling Indoor Air Quality
Modeling of Indoor Air Quality and Exposure
Estimating the Impact of Reduced Thrust Takeoff on NOx Emissions
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
Emission Reduction Systems (Dust, SO 2 , NO X )
Clean and Efficient Coal-Fired Power Plants: Development Toward Advanced Technologies