Combustion of the municipal waste generates highly corrosive gases (HCl, SO2, NaCl, KCl and heavy metals chlorides) and ashes containing alkaline chlorides and sulphates. Currently, corrosion phenomena are particularly observed on superheater’s tubes. Corrosion rates depend mainly on installation design, operating conditions i.e. gas and steam temperature and velocity of the flue gas containing ashes. This paper presents the results obtained using an innovative laboratory-scale corrosion pilot, which simulates MSWI boilers conditions characterized by a temperature gradient at metal tube on the presence of corrosive gases and ashes. The presented corrosion tests were realized on carbon steel at fixed metal temperature (400°C). The influence of the flue gas temperature, synthetic ashes composition and flue gas flow pattern were investigated. After corrosion test, cross section of tube samples were characterised to evaluate thickness loss and estimate corrosion rate while the elements present in corrosion layers were analysed. Corrosion tests were carried out twice in order to validate the accuracy and reproducibility of results. First results highlight the key role of molten phase related to the ash composition and flue gas temperature as well as the deposit morphology, related to the flue gas flow pattern, on the mechanisms and corrosion rates.

This content is only available via PDF.
You do not currently have access to this content.