The proportional composition of cellulose, hemicellulose, lignin and minerals in a biomass plays a significant role in the proportion of pyrolysis products (bio-oil, char, and gases). Traditionally, the composition of biomass is chemically determined, which is a time consuming process. This paper presents the results of a preliminary investigation of a method using thermo-gravimetric analysis for predicting the fraction of cellulose and lignin in lignin-cellulose mixtures. The concept is based on a newly developed theory of Pyrolytic Unit Thermographs (PUT). The Pyrolytic Unit Thermograph (PUT) is a thermograph showing rate of change of biomass weight with respect to temperature for a unit weight loss. These PUTs were used as input for two predictive mathematical procedures that minimize noise to predict the fractional composition in unknown lignin-cellulose mixtures. The first model used linear correlations between cellulose/lignin content and peak decomposition rate while the second method used a system of linear equations. Results showed that both models predicted the composition of lignin-cellulose mixture within 7 to 18% of measured value. The promising results of this preliminary study will certainly motivate further refinement of this method through advanced research.

This content is only available via PDF.
You do not currently have access to this content.