The possible existence of slip of liquids in close proximity to a smooth surface is studied experimentally via the dynamics of small particles suspended in a shear flow. Sub-micron fluorescent particles suspended in water are imaged and analyzed using Total Internal Reflection Velocimetry (TIRV). For water flowing over a hydrophilic surface, the measurements are in agreement with previous experiments and indicate that slip, if present, is minimal at low shear rates, but increases slightly as the shear rate increases. Furthermore, surface hydrophobicity can be attributed for additional shear-rate dependent boundary slip. Issues associated with the experimental technique and the interpretation of results are also discussed.

This content is only available via PDF.
You do not currently have access to this content.