According to the recent Laboratory News’ Proteomics Special article Mass Spectroscopy (MS) has become the technology of choice to meet today’s unprecedented demand for accurate bioanalytical measurements, including protein identification. Although MS can be used to analyze any biological sample, it must be first converted to gas-phase ions before it can be introduced into a mass spectrometer for analysis. It is transfer of a very small liquid sample (proteins are very expensive and often very difficult to produce in sizable quantities) into a gas-phase ions that is currently considered to be a bottleneck to high throughput proteomics. Electrospray ionization (ESI) is a technique developed in early 1990th to generate a spray gas-phase ions by applying high voltage (from several hundreds volts and up to a few thousands kilovolts relative to the ground electrode of the MS interface) to a small capillary through which the liquid solution is pumped. The high electric field ionizes the fluid forming the converging Taylor cone of the exiting jet which eventually breaks into many small droplets when the repulsive Coulombic forces overcome the surface tension. Because of the focusing effect associated with the spraying the electrically charged fluid, the size of the electrospray cone and thus of the formed droplets is in a few tens of nanometers range although the inner diameter of the capillary is in the micrometer range.

This content is only available via PDF.
You do not currently have access to this content.