Chemically synthesized nanostructures such as nanowires1, carbon nanotubes2 and quantum dots3 possess extraordinary physical, electronic and optical properties that are not found in bulk matter. These characteristics make them attractive candidates for building subsequent generations of novel and superior devices that will find application in areas such as electronics, photonics, energy and biotechnology. In order to realize the full potential of these nanoscale materials, manufacturing techniques that combine the advantages of top-down lithography with bottom-up programmed assembly need to be developed, so that nanostructures can be organized into higher-level devices and systems in a rational manner. However, it is essential that nanostructure assembly occur only at specified locations of the substrate and nowhere else, since otherwise undesirable structures and devices will result. Towards this end, we have developed a hybrid micro/nanoscale-manufacturing paradigm that can be used to program the assembly of nanostructured building blocks at specific, pre-defined locations of a chip in a highly parallel fashion. As a prototype system we have used synthetic DNA molecules and gold nanoparticles modified with complementary DNA strands as the building blocks to demonstrate the highly selective and specific assembly of these nanomaterials on lithographically patterned substrates.
Skip Nav Destination
ASME 2004 3rd Integrated Nanosystems Conference
September 22–24, 2004
Pasadena, California, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4177-4
PROCEEDINGS PAPER
Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures Available to Purchase
Balaji Kannan,
Balaji Kannan
University of California at Berkeley, Berkeley, CA
Search for other works by this author on:
Arun Majumdar
Arun Majumdar
Lawrence Berkeley National Laboratory, Berkeley, CA
Search for other works by this author on:
Balaji Kannan
University of California at Berkeley, Berkeley, CA
Arun Majumdar
Lawrence Berkeley National Laboratory, Berkeley, CA
Paper No:
NANO2004-46053, pp. 113-114; 2 pages
Published Online:
November 17, 2008
Citation
Kannan, B, & Majumdar, A. "Novel Microfabrication Techniques for Highly Specific Programmed Assembly of Nanostructures." Proceedings of the ASME 2004 3rd Integrated Nanosystems Conference. Design, Synthesis, and Applications. Pasadena, California, USA. September 22–24, 2004. pp. 113-114. ASME. https://doi.org/10.1115/NANO2004-46053
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Multiscale Experiments: State of the Art and Remaining Challenges
J. Eng. Mater. Technol (October,2009)
Making the Smallest Medical Devices
Mechanical Engineering (February,2014)
A Bid to Take The Lead
Mechanical Engineering (January,2002)
Related Chapters
Introduction
Bacteriophage T4 Tail Fibers as a Basis for Structured Assemblies
Challenges in biomacromolecular delivery
Biocompatible Nanomaterials for Targeted and Controlled Delivery of Biomacromolecules
Conclusion
Biopolymers Based Micro- and Nano-Materials