Abstract
Spatial atomic layer deposition (SALD) is a thin film deposition technique that could provide precise atomic-scale control at a large enough scale for many applications, such as clean energy technologies, catalytic conversion, batteries, and anti-fouling coatings. The spatially separated precursor zones are sequentially exposed to the substrate surface to deposit a film with precise control. If the precursor zones were to intermix during a deposition process, the precise control over film thickness would be lost. Therefore, it is essential to control the location of the precursors within the process region during a manufacturing process. This is typically achieved by controlling the gas flow rates and/or pressures, however it is challenging to actively monitor the location of the precursors during a deposition process as the process region has a small characteristic length and the vapor/gas precursors are difficult to observe/monitor. Therefore, there is a need to validate the precursor location and consequential process quality during a deposition. This can be of particular importance for substrate surfaces that are highly irregular or for manufacturing conditions where external factors such as temperature and ambient air speeds could change dynamically. In this study, a reduced order COMSOL Multiphysics® model is introduced that can predict the location of precursors in the process region. The model itself is discussed; the mesh size is selected considering accuracy and computation time; the model outputs are shown; and an initial experimental validation of the model is demonstrated.