Abstract
Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination.