Lasers have a wide range of manufacturing applications, one of which is the bending of metals. While there are multiple ways to induce bending in metals with lasers, this paper examines laser peen forming with femtosecond lasers on thin metals of 75-micrometer thickness perpendicular to the laser. The effects of multiple parameters, including laser energy, scan speed, scan pitch, and material preparation, on the bend angle of the metal are investigated. The bend angles are generated in both concave and convex directions, represented by positive and negative angles, respectively. While it is possible to create angles ranging from 0 to 90 degrees in the concave direction, the largest average convex angle found was only −26.2 degrees. The positive angles were created by high overlapping ratios and slow speeds. Furthermore, the concave angles were made by a smaller range of values than the convex angles, although this range could be expanded by higher laser energy. The positive angles also had a higher inconsistency than the negative angles, with an average standard deviation of 6.8 degrees versus an average of 2.6 degrees, respectively. The characterization of bending angles will allow for more accurate predictions, which will benefit traditional metal forming applications and more advanced applications such as origami structures with metal.

This content is only available via PDF.
You do not currently have access to this content.