Abstract
Due to the principle of driving at gravity center (DGC), Gantry mobile-type dual-drive machines (GMDMs) are widely used in automatic equipment. The dynamic characteristics of GMDMs have a large influence on the machining quality, efficiency and processing performance of the machine tool. According to the existing research on the dynamic characteristics of GMDMs, it can be found that the dynamic characteristics of the machine tool can be influenced by the feed parameters. So, combined with the research content of the subject, the influence of feed speed on the dynamic characteristics of machine tools under different accelerations is studied. In this paper, based on the law of conservation energy, the dynamic model of GMDMs is established. Then, the accuracy and correctness of the dynamic model are verified through theoretical calculations combined with static hammering experiments, this can provide strong theoretical support for subsequent experiments. And the influence of feed speed under different motor acceleration on the dynamic characteristics of the dual-drive system was studied by two experiments. This study provides a method for analyzing the effect of the feed parameters on the dynamic characteristics of the machine tool under different accelerations.