Abstract

Ceramic binder jetting processes have inherent limitations in achieving high density due to the low packing density of the powder bed. An emerging route to mitigate the low packing density in ceramic binder jetting entails uniaxial compaction of newly spread powder layers prior to ink deposition. The introduction of layerwise pressure induced a stress shielding effect, i.e., unbalanced stresses between the printed region saturated with ink and the surrounding loose powder, which generates heterogeneous stress in the powder bed and ultimately influences the density of the final part. In this paper, we attempt to better understand the stress shielding effect during the compaction of a selectively ink-jetted powder bed as a function of the printing pattern, i.e., ratio of printed to unprinted sector. Our findings reveal a decreased print area increased the resulting stress shielding effect. Additionally, when pressed without neighboring dry powder, a printed region experienced a much higher stress than the hybrid composition. The dry powder experienced the opposite effect, where when pressed alone, the dry powder had a much lower stress than when pressed with saturated powder. Findings will assist in density prediction and print pattern determination of compacted binder jetted ceramics.

This content is only available via PDF.
You do not currently have access to this content.