Abstract
Fused filament fabrication (FFF), a type of extrusion-based additive manufacturing method, has proven its suitability for the production of highly complex components without costly tooling. However, traditional FFF systems are restricted to planar layer deposition, which results in poor surface smoothness and a reduction in strength and stiffness along the layer-stacking direction. Recent advancements in the FFF process have made it possible to reinforce and strengthen the printed parts with continuous fibers, which significantly increases the material’s anisotropy. Therefore, non-planar printing is necessary to optimize the anisotropic material behavior. This paper proposes a non-planar slicing method for optimizing the performance of continuous fiber-reinforced FFF parts printed using a 6-DOF industrial robot. The computational framework allows for the deposition of material on non-planar surfaces along the direction of the largest principal stress obtained from a finite element analysis following topology optimization. Three parts were successfully sliced and printed in a non-planar manner to generate stress-oriented toolpaths for continuous fiber-reinforced FFF using a 6-DOF robotic arm.