Abstract
Functionally graded surfaces — surfaces with properties that are engineered to have spatial variations — have numerous applications such as micropumps, auto-mixers, and flow control for lab-on-chip devices. Manufacturing of functionally graded surfaces is an increasingly important topic of research. This study investigates the feasibility of creating a functionally graded surface during channeling of borosilicate glass by the electrochemical discharge machining (ECDM) process. The ability to create surface roughness gradients in microchannels during the machining process was demonstrated by modifying the input voltage, tool feed rate, and tool rotation speed. Microchannels with graded surface roughness having Ra values ranging from 0.35 to 4.07 μm were successfully machined on borosilicate glass by ECDM. Surface profiles were obtained via a stylus profilometer, and roughness values were calculated after detrending and applying a Gaussian filter. To demonstrate the process versatility, micro channels with increasing and decreasing Ra values were machined, one increasing from 1.43 μm to 4.07 μm, another decreasing from 3.29 μm to 1.10 μm. To demonstrate the process repeatability, a micro channel with similar surface roughness on both ends and a lower Ra value in the center was created. In this channel, the Ra value at the start is 0.35 μm, reducing to 0.24 μm, then rising again to 0.38 μm in the final section.