Industrial robots, as mature and high-efficient equipment, have been applied to various fields, such as vehicle manufacturing, product packaging, painting, welding, and medical surgery. Most industrial robots are only operating in their own workspace, in other words, they are floor-mounted at the fixed locations. Just some industrial robots are wall-mounted on one linear rail based on the applications. Sometimes, industrial robots are ceiling-mounted on an X-Y gantry to perform upside-down manipulation tasks. The main objective of this paper is to describe the NeXus, a custom robotic system that has been designed for precision microsystem integration tasks with such a gantry. The system tasks include assembly, bonding, and 3D printing of sensor arrays, solar cells, and microrobotic prototypes. The NeXus consists of a custom designed frame, providing structural rigidity, a large overhead X-Y gantry carrying a 6 degrees of freedom industrial robot, and several other precision positioners and processes. We focus here on the design and precision evaluation of the overhead ceiling-mounted industrial robot of NeXus and its supporting frame. We first simulated the behavior of the frame using Finite Element Analysis (FEA), then experimentally evaluated the pose repeatability of the robot end-effector using three different types of sensors. Results verify that the performance objectives of the design are achieved.

This content is only available via PDF.
You do not currently have access to this content.