Abstract

As the core component of aero-engine, the service performance of aero-engine blade has an important influence on the engine’s reliability and safety performance. Existing studies have shown that machined surface characteristics affect the fatigue strength of components. However, current studies are all based on regular fatigue samples. The structure of blades different from fatigue samples, and the influence mechanism of structural differences on the service performance of blades is still unclear. In addition, the conventional fatigue test conditions are not representative for the blades’ actual service conditions, so it is difficult to realize the processing process for the service performance optimization. In this study, the aero-engine blades processed by abrasive belt grinding and the vibration fatigue test bench were used to explore the influence of surface roughness, surface texture, and surface residual stress on the fatigue performance of aero-engine blades under actual working conditions. The aero-engine blades were ground with different process parameters to obtain different single-factor surface characteristics. By comparing the vibration fatigue life of blades with different surface features, the influence degree of each surface feature on the fatigue life was explored. Results showed that surface roughness has the greatest influence on fatigue strength, followed by residual stress, and surface texture has the least influence on fatigue strength.

This content is only available via PDF.
You do not currently have access to this content.