Abstract

Vibrations during milling of hard-to-cut materials can cause low productivity, inferior quality and short tool life. It is one of the common issues in the machining of hard-to-cut materials employed in aerospace applications, such as titanium alloys. This paper presents an analysis of the vibration signals in the 3 axes of movement during titanium end milling, under diverse cutting parameters, manipulating spindle speed and feed rate. Signals were obtained using a triaxial accelerometer and processed in MATLAB. The analysis was conducted in the frequency-domain and the time-frequency domain. The results show that high-frequency vibration could occur in any direction with different amplitudes. Response on each axis depends on spindle speed, feed, and type of milling. A frequency component continually appeared in each axis regardless of cutting conditions and is located near the natural frequencies. Finally, the triaxial accelerations were compared for the milling cases with a new and a worn tool. Results highlight the importance and need for continuous monitoring of vibration in the 3 axes, instead of only using a single-channel signal, providing experimental data which could expand knowledge relating to the milling of titanium alloys.

This content is only available via PDF.
You do not currently have access to this content.