Abstract
Pneumatic MicroExtrusion (PME) is a direct-write additive manufacturing process, which has emerged as a robust, high-resolution method for the fabrication of a broad spectrum of biological tissues and organs. However, the PME process is intrinsically complex, governed by bio-physio-chemical phenomena as well as material-process interactions. Hence, investigation of the influence of consequential factors on bone scaffold fabrication as well as investigation of cell-scaffold interactions would be an inevitable need. The objective of the work is to investigate the biocompatibility as well as the histological properties of PME-fabricated porous bone scaffolds, composed of polycaprolactone (PCL).
To achieve this objective, a media extraction of the scaffold material was tested for cytostatic or cytotoxic activity with the aim to: (i) assess the fabricated scaffolds’ feasibility of use in regenerative medicine, and (ii) determine their structural integrity in a modelled in-vivo environment. In addition, the scaffolds were inoculated with an established osteosarcoma cell line (SAOS-2) and cultured for seven days to investigate the scaffold architecture and cell integration potential. A histological examination was performed on the seeded scaffolds for further in-depth analysis of cell-scaffold interaction. Overall, the results of this study pave the way for future investigation of stem cell incorporation into PME-fabricated PCL scaffolds toward the treatment of osseous fractures and defects.