Microassembly systems utilizing precision robotics have long been used for realizing 3-dimensional microstructures such as microrobots. Prior to assembly, such components are fabricated using Micro-Electro-Mechanical-System (MEMS) technology. The microassembly system then directs a microgripper through automated or human-controlled pick-and-place operations. In this paper, we describe a novel custom microassembly system, named NEXUS. The NEXUS integrates multi-degree of freedom (DOF) precision positioners, microscope computer vision, and micro-scale process tools such as a microgripper and vacuum tip. A semi-autonomous human-machine interface (HMI) is programmed by NI LabVIEW® to allow the operator to interact with the microassembly system. The NEXUS human-machine interface includes multiple functions, such as positioning, target detection, visual servoing, and inspection. The microassembly system’s HMI was used by operators to assemble various 3-dimensional microrobots such as the Solarpede, a novel light-powered stick-and-slip mobile microcrawler. Experimental results are reported in this paper that evaluate the system’s semi-autonomous capabilities in terms of assembly rate and yield and compare them to purely teleoperated assembly performance. Results show that the semi-automated capabilities of the microassembly system’s HMI offer a more consistent assembly rate of microrobot components.

This content is only available via PDF.
You do not currently have access to this content.