Polymeric materials are often used as structural binders for biomedical applications. The mechanical properties of the material strongly depend on the fabrication process. To this end, we illustrate a set of casting methods for the production of samples to be tested via destructive methods. The curing process of the artifact was controlled during fabrication, and the molds were also made of polymeric materials. The fabrication of molds is illustrated where particular emphasis is posed on the manufacturing and testing of silicone molds using off-the-shelf material.

Cyanoacrylate (CA), Epoxy resin (EP) and Methacrylate ester monomers (MEMs) artifacts have been fabricated using said molds. Of the aforementioned resins, MEMs are a class of thermosetting biocompatible polymers in which fabrication is especially problematic because of the very narrow temperature window at which the monomers polymerize. This research analyzes the casting process of curable materials highlighting the setbacks of using plastic-based molds. Among the cast based manufacturing techniques, specific focus was given to the case where MEMs is made to polymerize in a silicone mold controlling the temperature of the environment. The thermal properties that the silicone-based molds require for the appropriate curing of the polymer are analyzed. It was found that due to the very high heat capacity of silicone, the regulation of the temperature within the mold is difficult often exciding the boiling point of the casted resin.

This content is only available via PDF.
You do not currently have access to this content.