Abstract

In order to cater increasing need of lightweight and strong structures to be used in various industries like ship manufacturing, railways transportation, vehicle body cell etc., efforts have been made to develop and assess various welding or joining techniques. Dissimilar metal welding offers promising solution in this direction due to modification of properties by combining two dissimilar metals in terms of mechanical properties and better corrosion or electrical properties with lesser specific weight. Stainless steel of grade AISI 304 is widely used for manufacturing application in different industries and aluminum alloy 6061 T-6 has gaining importance in welding due to its high corrosive resistance and high weldability properties. In the present work, welding of dissimilar metals i.e. Aluminium 6061 T-6 and Stainless Steel – AISI 304 was carried out with new welding technique i.e. Friction Crush Welding (FCW). Dissimilar welds prepared at different levels of tool rotation and feed rate were characterized in terms of bond strength. Taguchi L9 Design of Experiments (DOE) was used to find optimal process parameters for dissimilar FCW. The theoretical optimum bond strength calculated using Taguchi L9 was 5134.53 N at tool rotation of 740 rpm and feed rate of 45 mm/mim. The theoretical optimum value was in line with the experimental results.

This content is only available via PDF.
You do not currently have access to this content.