Abstract
Hybrid Manufacturing (HM) combining Additive Manufacturing (AM) and subtractive machining (SM) technologies have recently been introduced and have the potential to address the shortcomings of AM, such as the poor surface finish and requires post-processing of the support structures. One such example of an HM machine is the DMG Mori Lasertec 65. These 5-axis HM machines allow for rapid deposition of material during additive manufacturing and address the issues of feature resolution, surface finish, and tolerances by subtractive machining. Additionally, these processes allow for the creation of complex geometries not possible with standard 5-axis machining. Process planning for HM is a reasonably complex manual task and could benefit from automation. Critical steps in process planning are the decomposition of the part into additive and subtractive features, sequencing all features and assigning the tool-paths for these features. This paper presents algorithms for decomposing the part and sequencing the additive and subtractive features in an automated manner, paving the way for a fully automated system for HM. Examples of a wide range of parts demonstrating the capability of the algorithm are presented.