Abstract
The mechanical properties of 3D printed polymers parts are process parameter dependent. Defects such as inadvertent voids between deposited rasters and layers lead to weakness in produced parts, which results in inferior mechanical properties as compared to injection molding. An alternative method to change energy absorption and stiffness of a polymer is hybrid additive manufacturing (AM). Hybrid-AM is the use of additive manufacturing with one or more secondary processes that are fully coupled and synergistically affect part quality, functionality, and/or process performance. In this study, fused filament fabrication (FFF) was coupled with layer-by-layer shot peening to study the dynamic mechanical properties of ABS 430 polymer using dynamic mechanical analysis (DMA). FFF is a heated extrusion process. Shot peening is a mechanical surface treatment that impinges a target with a stochastically dispersed, high velocity stream of beads. Compressive residual stress was imparted to preferential layer intervals during printing to modify the elasticity (stiffness), viscosity, toughness, and glass transition temperature. Viscoelastic and dynamic mechanical properties are important to the performance of polymers in automotive, aerospace, electronics, and medical components. Coupling printing and peening increased the storage and loss moduli as well as the tangent delta. DMA results suggest that preferential layer sequences exist that possess higher elasticity and better absorb energy upon sinusoidal dynamic loading.