Abstract

Hydrothermal-assisted transient jet fusion (HTJF) is a powder-based additive manufacturing method of ceramics, which utilizes a water-mediated hydrothermal mechanism to fuse particles together, eliminating the use of organic binders in forming green bodies and thereby contributing to high green-density parts (> 90%) advantageous for fabricating functional materials with high-performance. In the HTJF process, a transient solution such as water is selectively deposited into a powder bed in a layer-by-layer fashion followed by a hydrothermal fusion process. Upon the ejection and deposition of a droplet of the transient solution on the surface of the powder bed, the diffusion behavior of the liquid significantly influences the particle fusion and the fabrication accuracy of the HTJF process. Precise control of the liquid diffusion in the powder bed is critical for the fabrication of ceramic structures with both high density and accuracy. In this paper, the dependence of transient solution diffusion on different process parameters (i.e., powder packing density, droplet size, pressure, etc.) in the HTJF process were studied. Both numerical modeling and experimental methods were used to quantify the relationships between processing parameters and diffusion profiles of transient solution droplets (e.g., diffusion width/depth). Optimum processing conditions were identified to mitigate the undesired diffusion of transient solution droplets in the powder bed.

This content is only available via PDF.
You do not currently have access to this content.