Abstract

This study investigates the effects of laser shock peening (LSP) on residual stress, near surface modification, and hardness of Inconel 718 (IN718) specimens manufactured by selective laser melting (SLM) technique. Optical microscope and electron backscattered diffraction (EBSD) is used to characterize the microstructures of both heat-treated and as-built specimens. A nanoindentation test is performed to determine the properties such as the hardness of as-built and heat-treated specimens. Afterward, the hardness along the distance from the LSP treated surface is also defined. To investigate the effect of LSP energy on the mechanical properties of specimens, two levels of LSP energy, e.g., low energy LSP (6.37 GW/cm2) and high energy LSP (8.60 GW/cm2), are carried out on selected samples. With the increase in laser energy density, it is found that both compressive residual stress and hardness increase after LSP treatment. The as-built specimens after high energy LSP treatment show the compressive residual stress of −875 MPa, and the surface hardness increases from 468 HV to 853 HV.

This content is only available via PDF.
You do not currently have access to this content.