Cutting mechanism in micromilling is governed by the tool condition along with the machining parameters and workpiece material properties. A rapid tool wear in micromilling often deteriorates the surface quality, which could be due to the occurrence of plowing. The effects of tool condition on the transition in cutting mechanisms from shearing to plowing have not been adequately addressed in micro milling. In this work, we attempt to correlate cutting mechanism with tool conditions, so that their influence on force and surface profiles are investigated. Micro milling experiments are performed to investigate these correlations. A fluctuation parameter has been defined to quantify the fluctuation in force signal. It is evident that as the feed varies from 0.2 μm/teeth to 5 μm/teeth, the fluctuation reduces and similar fluctuations are reflected on the generated surface also. The surfaces corresponding to lower force fluctuations has an Ra value less than 350 nm. As cutting edge radius increases, surface finish decreases. However, with chipping, new sharper cutting edges are formed which may improve the surface finish locally but contribute to the overall variation in the surface profiles.

This content is only available via PDF.
You do not currently have access to this content.