Abstract
Remanufacturing is able to reduce the environmental pollution and the manufacturing cost by recycling the end-of-life products. Disassembly is a critical step for the production process of remanufacturing. Traditional disassembly process is finished by either manual disassembly that has low efficiency or robotic disassembly that has low flexibility. Human-robot collaboration for disassembly integrates the advantages of manual disassembly and robotic disassembly, which has both high efficiency and high flexibility. For the design step of human-robot collaborative disassembly line, how to balance the human-robot collaboration workstation is an important optimization objective. The major difference between the human-robot collaboration for disassembly line and the traditional disassembly line is that it is necessary to ensure safety of the operator. This paper develops a set of models for the human-robot collaboration for disassembly line balancing problem, and the task classification and the allocation of human-robot collaborative disassembly are conducted. In order to ensure the safety of human-robot collaboration in disassembly, the safety strategy between the operator and the robot is considered in disassembly workstations. Subsequently, human-robot collaboration for disassembly line balancing problem with three objectives is solved by an improved discrete bees algorithm. Finally, the case studies based on disassembling bearing parts are conducted to verify the proposed method.