A physics-based analytical solution is proposed in order to investigate the effect of hatch spacing and time spacing (which is the time delay between two consecutive irradiations) on thermal material properties and melt pool geometry in metal additive manufacturing processes. A three-dimensional moving point heat source approach is used in order to predict the thermal behavior of the material in additive manufacturing process. The thermal material properties are considered to be temperature dependent since the existence of the steep temperature gradient has a substantial influence on the magnitude of the thermal conductivity and specific heat, and as a result, it has an influence on the heat transfer mechanisms. Moreover, the melting/solidification phase change is considered using the modified heat capacity since it has an influence on melt pool geometry. The proposed analytical model also considers the multi-layer aspect of metal additive manufacturing since the thermal interaction of the successive layers has an influence on heat transfer mechanisms. Temperature modeling in metal additive manufacturing is one of the most important predictions since the presence of the temperature gradient inside the build part affect the melt pool size and geometry, thermal stress, residual stress, and part distortion. In this paper, the effect of time spacing and hatch spacing on thermal material properties and melt pool geometry is investigated. Both factors are found statistically significant with regard to their influence on thermal material properties and melt pool geometry. The predicted melt pool size is compared to experimental values from independent reports. Good agreement is achieved between the proposed physics-based analytical model and experimental values.

This content is only available via PDF.
You do not currently have access to this content.