Laser surface hardening of most of the industrial components require depth of surface modification in the range of 100–150 micron. Conventional laser surface hardening uses laser as a heat source to modify a particular area of the surface without melting in an inert gas environment. However, the hardened profile in this case shows peak hardness value at a certain depth from the top surface. Also, hardening the top surface to get relatively much higher hardness near the top surface in case of thin sheets becomes difficult due to accumulation of heat below the surface of the specimen which in turn lowers the cooling rate. Hence, self-quenching becomes inadequate. In the present study, an in-house fabricated laser processing head with coaxial water nozzle has been used to flow a laminar water-jet during the laser surface hardening process to induce forced convection at the top surface. Thus, heat gets carried away by the water-jet from the top surface and by the water from the bottom surface as well. Results show that with judicious selection of process parameters, it is possible to get higher hardness (800 HV) to that of conventional laser surface hardening (500 HV) at the top surface using this process. Present process can be used for those cases where high hardness values are required near the top surface specially for thin sheets and thermally sensitive materials.

This content is only available via PDF.
You do not currently have access to this content.