Magnetic field assisted finishing process is a nanofinishing process which uses magnetic field for precise control of finishing forces. Magnetorheological fluid mixed with diamond abrasive particles in base medium of glycerol, hydrofluoric acid, nitric acid, and deionized water is used as the polishing medium. The novel tool is a magnet fixture made of mu-metal which is used to hold the magnet during finishing. In the present experimental study, finishing at a spot on flat titanium alloy is carried out to analyze the forces involved in the finishing. Normal force is the main force responsible for the indentation by the abrasive particle on the workpiece surface. Tangential force helps in removing indented material. The measured normal force and tangential force during the spot finishing are 3.285 N and 0.43 N, respectively. The final surface roughness achieved after spot finishing is 10 nm from initial surface roughness of 200 nm. The percentage improvement in surface roughness is 95%.

This content is only available via PDF.
You do not currently have access to this content.