In this paper, a Coupled Eulerian Lagrangian (CEL) finite element model (FEM) was developed to simulate the friction stir spot welding (FSSW) of commercial pure copper. Through simulations results, the paper presents and discusses the effect of FSSW process parameters; namely rotational speed, plunging rate and dwell time, on the developed temperatures and their distribution within the workpiece as well as material flow and deformation. Model validation showed a good agreement between predicted temperature history and the experiment one, with a maximum error of 6%. Furthermore, the predicted formation of flash was also found in good agreement with the experiment with an error of only 7%. Simulation results predicted peak temperature and plastic strain among all studied welding conditions were 920 K and 3.5 respectively at 1200 rpm rotational speed, 20 mm/min plunging rate and 4 seconds dwell time, which is approximately 70% of the melting point of pure copper.

This content is only available via PDF.
You do not currently have access to this content.