Ultrasonic welding is a solid-state joining process which uses ultrasonic vibration to join materials at relatively low temperatures. Ultrasonic powder consolidation is a derivative of the ultrasonic additive process which consolidates powder material into a dense solid block without melting. During ultrasonic powder consolidation process, metal powder under a compressive load is subjected to transverse ultrasonic vibrations resulting in a fully-dense consolidated product. While ultrasonic powder consolidation is employed in a wide variety of applications, the effect of critical process parameters on the bonding process of powder particles during consolidation is not clearly understood. This study uses a coupled thermo-mechanical finite element analysis technique to investigate the effect of critical process parameters including vibrational amplitude and base temperature on the stress, strain, and particle temperature distribution during the ultrasonic powder consolidation process. The study finds that during this process, the ultrasonically vibrating tool imparts cyclic vibratory shear stress on the particles. The simulation also revealed that the particle temperature just reaches the recrystallization point. Higher vibration amplitude imparted higher frictional heat on the particles, thereby aiding the consolidation process. The simulation study also showed indications of thermal softening and restricted grain boundary sliding during the ultrasonic powder consolidation process. The outcomes of this study can be used to further the industrial applications of ultrasonic powder consolidation process as well as other ultrasonic welding based processes.

This content is only available via PDF.
You do not currently have access to this content.