This paper describes a method to monitor real time parameters and detect early warnings in induced draft fan (ID FAN). An artificial neural network (ANN) model based on cross-relationships among operating parameters was established. In particular, this paper adopted the pre-training of Restricted Boltzmann machines (RBM) and analyzed the training errors of model. A new approach was proposed to monitor parameters by predicted value of model and distribution law of training error, and the reasonable range of each parameter was defined to detect the early warnings in real time. Combining the historical operational data of the No. 1 induced draft fan of No. 3 generating unit in Shajiao C Power Plant in China, this work used MATLAB to verify and analyze the proposed method. The numerical examples shown that the proposed method has better detection performance than the fixed upper and lower limits in the safety instrumented system (SIS). Moreover, this work can expand to other machinery that could be used in manufacturing easily.

This content is only available via PDF.
You do not currently have access to this content.