Using fixtures for assembly operations is a common practice in manufacturing processes with high production volume. For automated assembly cells using robotic arms, trajectories are programmed manually and robots follow the same path repeatedly. It is not economically feasible to build fixed fixtures for small volume productions as they require high accuracy and are part specific. Moreover, hand coding robot trajectories is a time consuming task. The uncertainties in part localization and inaccuracy in robot motions make it challenging to automate the task of assembling two parts with tight tolerances. Researchers in past have developed methods for automating the assembly task using contact-based search schemes and impedance control-based trajectory execution. Both of these approaches may lead to undesired collision with critical features on the parts. Our method guarantees safety for parts with delicate features during the assembly process. Our approach enables us to select optimum impedance control parameters and utilizes a learning-based search strategy to complete assembly tasks under uncertainties in bounded time. Our approach was tested on an assembly of two rectangular workpieces using KUKA IIWA 7 manipulator. The method we propose was able to successfully select the optimal control parameters. The learning-based search strategy successfully estimated the uncertainty in pose of parts and converged in few iterations.

This content is only available via PDF.
You do not currently have access to this content.